
1

A. Aztec Diamond
time limit per test 1 second

memory limit per test 128 megabytes

Jaemin found some ancient diamond-shaped symbols composed of 1x2 bricks.

Noticing that some bricks are horizontal and some are vertical, Jaemin felt

uncomfortable and decided to turn all bricks to vertical. Jaemin cannot lift a brick

with one hand because his hands are small, but he can lift two bricks with two

hands. Therefore, the only thing he can do is to choose any 2x2 square composed of

two bricks and rotate it 90 degrees.

A programming contest is starting soon, so he can’t spend too much time here. Let’s

help him!

Input
On the first line, the size of symbol N is given(1 <= N <= 100). On the next 2N

lines, the string with length 2N representing row of symbol is given. "." is a blank,

"L" and "R" are the left and right squares of the horizontal brick, and "U" and "D" are

the upper and lower squares of the vertical brick.

Output
On the first line, print the number of rotations D needed to make all the bricks

vertically. This value should be same or less than N ^ 4. The next D line shows the

row number and column number in the upper left corner of the 2x2 square to rotate.

The top row and leftmost column are numbered 1. The existence of an answer is

guaranteed for all inputs satisfying the input condition.

2

Example
input
3

..UU..

.UDDU.

UDLRDU

DUULRD

.DDLR.

..LR..

output
4

4 4

4 3

3 3

5 3

3

B. Break Oven, Run Cookie!
time limit per test 1 second

memory limit per test 256 megabytes

The witch locked the brave cookies in the oven! The floor of the oven is a grid, and

each second, each cookie can move to one of the 4 adjacent cells or stay there. The

witch will find it suspicious when the cookies are close together, so there can be at

most one cookie per cell.

You are a cookie lover and want to rescue the cookies. You found that some cells are

weak, so you plan to direct the cookies there. Fortunately, there are exactly the

same number of weak cells as the cookies. Once a cookie step on the cell, it breaks

and the cookie escapes through the hole. However, once a cookie escapes through a

hole, the witch spawns an obstacle on that cell, preventing other cookies from

stepping it.

To avoid the witch's suspicion, each cookie can move at most 1 cell per second. Find

the least amount of time needed for all cookies to escape.

4

The above image shows a solution for the sample input 1. The gray cells are weak

cells, and the black cells are impassable cells because of the obstacles.

Input
The first line of the input consists of three integers H, W, and N, where H and W are

the height and the width of the grid, and N is the number of the cookies (and weak

cells). 1 <= H, W, H*W <= 100, and 1 <= N <= H*W/2. Each of the next N lines

contains two integers r and c, the position of each cookie. Each of the next N lines

contains two integers r and c, the position of weak cells. 1 <= r <= H, 1 <= c <=

W, and all positions are distinct.

Output
Print the least amount of time needed for all cookies to escape, or -1 if it's not

possible that all cookies escape.

Examples
input
4 4 4

1 2

1 3

2 1

3 1

2 4

3 4

4 2

4 3

5

output
4

input
1 4 2

1 1

1 2

1 3

1 4

output
-1

6

C. Coke Challenge
time limit per test 1 second

memory limit per test 512 megabytes

Mr. Jeong really loves coke. He loves so much that he drinks coke everyday without

exception. One day, he decided to open a coke contest in Daejeon. To the winner, a

box of cokes will be given!

N people participate in the contest. Each participant is given K mL of coke, and the

one who finishes his/her coke earliest wins the contest. But it is painful to drink the

whole coke in one time, so each person repeats drinking and taking a rest. More
specifically, as soon as the contest starts, the ith participant starts to drink

for ti seconds, then takes a rest for si seconds, and repeats this process until no

more coke remains. Moreover, everyone drinks A mL per second. The contest is over

if one of the participants finished his/her coke.

Given the infomation of N participants, determine after how many seconds the

contest is finished, since the contest begins.

Input
The input starts with the first line containing three
integers N (2 ≤ N ≤ 1000), K (1 ≤ K ≤ 10000), and A (1 ≤ A ≤ 100). The ith of the

next N lines contains two integers ti (1 ≤ ti ≤ 100) and si (1 ≤ si ≤ 100), the

information of ith participant.

Output
Write a single integer, the answer to the question.

Examples
input
2 100 1

10 5

5 10

output
145

input
4 100 2

30 30

49 2

7

50 50

20 10

output
50

8

D. Dev, Please Add This!
time limit per test 1 second

memory limit per test 256 megabytes

Jaemin developed a puzzle game app.

A ball is placed on a cell in a grid. You can roll the ball upwards, downwards, to the

left, or to the right. The ball rolls in that direction until it hits a wall or the boundary.

Some cells have stars on them, and the player obtains the star when the ball stops

there or passes through it. The objective of the game is to obtain all stars in the

grid.

This app has a level editor where players can make and share their own levels. One

day, someone suggested: “Please add a feature to check if my level is possible to

solve!” Easier said than done, right?

Input
The first line of the input consists of two integers, H (height) and W (width).

(1 ≤ H, W ≤ 50) Each of the next H lines contains a string of legnth W which

describes each row of the grid. “#” means a wall, “.” means a blank space, “O”

means a ball, and “*” means a star. There is exactly one ball and at least one star

on the grid.

Output
Print “YES” if it is possible to obtain all stars, otherwise “NO”.

Examples
input
3 7

#..O..#

#.###.#

..#..

output
NO

input
6 6

..##

..O...

..#.

####*.

9

......

.....#

output
YES

10

E. Expectation of Games
time limit per test 1.5 seconds

memory limit per test 128 megabytes

Snakes and Ladders is a famous dice game. Initially, a token is placed outside the
board. Each turn, you roll a die with M sides. There is 1 / Mprobability that each

integer from 1 to M appears. Then you read the number x on the die, and move

forward your token x times. (If the token is outside the board, place it on the x-th

cell.) If the resulting cell has a snake or a ladder, you move to the cell it connects
to. The game is over if the token reaches the N-th cell or beyond.

It’s theoretically possible to get in the infinite loop, but if a game is correctly

designed, it must be possible to reach the end regardless of where the token is

placed at. If not, let’s call it a “badly designed game.”

Find the expected number of dice rolls to finish the game.

Input
The first line of the input consists of three integers: N, M, and S, where S is the

number of snakes and ladders.(1 ≤ N ≤ 100, 1 ≤ M ≤ 20, 0 ≤ S ≤ N / 2) Each of the

next S lines contains two integers: the index of the starting cell and the ending cell.

(If the index of the ending cell is smaller than that of the starting cell, it is a snake;
otherwise, it is a ladder.) The index of the starting cell is at least 1 and at most N -
 1. The index of the ending cell is at least 1 and at most N. There are no duplicates

among all starting and ending cells.

Output
Print the expected number of dice rolls to finish the game. Any answer within the
absolute or relative error of at most 10 - 4 will be accepted. If the game is badly

designed, print  - 1.

Examples
input
4 2 1

2 4

output
1.75

input

11

6 2 3

4 2

5 3

1 6

output
-1

12

F. Faster Sorting
time limit per test 1 second

memory limit per test 128 megabytes

From this year, you can use Python in the ACM-ICPC World Final. To celebrate this,

we introduce a fun Python fact.

Python uses a sorting algorithm called Timsort. In short, the algorithm splits the list

into mostly sorted subarrays, sorts each subarray using insertion sort, and merges

the sorted subarrays. If the list is already mostly sorted, this algorithm runs very

quickly.

In this problem, let's focus on the splitting part:

1. Take the longest non-decreasing (a0 ≤ a1 ≤ a2 ≤ ...) or increasing (a0 > a1 > a2 > ...)
subarray that starts from the current index.

2. If the length of the subarray is less than MINRUN, take more elements until the

length equals MINRUN or all elements are taken. Let’s call these additional

elements “bad elements”.

If MINRUN is too small, there are too many subarrays to merge; if MINRUN is too

large, it takes too much time to apply insertion sort. For this reason, it is important
to set an appropriate value of MINRUN. Also, N / MINRUN should be close to a

power of 2 to ensure a balanced merging, but we will not consider this in this
problem. For each MINRUN value, find the number of subarrays and bad elements.

13

Input
The first line consists of a single integer N(5 ≤ N ≤ 100, 000), the length of the array.

The second line consists of N integers, the elements of the array. The absolute value

of each element is at most 109. The third line consists of a single

integer Q (1 ≤ Q ≤ 100, 000), the number of queries. Each of the next Q lines

contains a single integer MINRUN (2 ≤ MINRUN ≤ N).

Output
For each query, print the number of subarrays and bad elements in one line.

Example
input
15

2 4 4 3 -1 -2 -2 5 6 5 4 3 2 3 4

3

3

4

5

output
5 0

4 3

3 5

14

G. God Game
time limit per test 1 second

memory limit per test 512 megabytes

Taeyoung is a game addict. He plays "Legend of League" everyday and does not

study at all. His friend Joon though that Taeyoung was a pathetic person, so he

decided to make "God Game" to take Taeyoung out of "Legend of League".

The game Joon made is the following. The game takes place in a rectangle of
size N × M placed in the first quadrant of the (x, y)-coordinate plane, where one of

the corner is the origin of the plane. The goal of the game is to move a ball from the
start position (startX, startY) to the end position (endX, endY). These are all integer

coordinates. Now for each integer time t, Taeyoung does one of the following.

1. Leave the ball in place for 1 second.

2. Let (x, y) be the current position of the ball. Move the ball to the new position for

1 second at a speed of 1 unit per second. The new position should be one
of (x + 1, y), (x, y + 1), (x - 1, y), and (x, y - 1), provided that it is allowed to place the

ball there.

At every moment, the coordinate (x, y) should satisfy 0 ≤ x ≤ N and 0 ≤ y ≤ M. Even if

this condition is satisfied, some positions are forbidden to place the ball. Note that at
least one of x-coordinate and y-coordinate is an integer at each time t.

However, even with these constraints, the game is still too easy. So Joon
made K moving obstacle on several levels. The ith obstacle starts from (xi, yi) at

time t = 0, and follows the borderline of a square with one side of ai (1 ≤ ai ≤ 5), in a

clockwise direction at a speed of 1 unit per second. (xi, yi) is the bottom left corner

of the square. For example, if ai = 2, then the obstacle moves along the following in

a cycle of 8 seconds.

(xi, yi) → (xi, yi + 1) → (xi, yi + 2) → (xi + 1, yi + 2) → (xi + 2, yi + 2) → (xi + 2, yi + 1) → (
xi + 2, yi) → (xi + 1, yi) → (xi, yi) → ...

The paths of obstacles do not leave the N × M rectangle, but it may move to a place

that the ball is not allowed to move, and several obstacles may share a common
path. If the ball and an obstacle is in the same position at some time t, the game is

over and we are lost. Here, t may not be an integer, and so is the coordinate where

the ball and the obstacle met.

15

After Joon finished developing the game, he called the game "God Game" and

introduced it to Taeyoung. But the game was way too difficult, and he couldn't beat

the third level. We cannot play the game for him, but maybe we can help him by

telling how long it will take to beat the level.

It will be annoying if some obstacles passes through the start position and the end

position, and Joon didn't want to be so mean to Taeyoung. So you may assume that

such case does not exist.

Input
The first line contains the size of the rectangle N and M (1 ≤ N, M ≤ 50). The

following N + 1 lines contain the information of the game. If jth character of the ith

line is '.', it means that the ball can move to (i - 1, j - 1). If it is '#', then it means

that the ball is not allowed to move to (i - 1, j - 1). If it is 'S' or 'E', then (i - 1, j - 1) is
the start position and the end position, respectively. The following line contains a
single integer K(0 ≤ K ≤ (N + 1)(M + 1) - 2), the number of obstacles in the level.

The ith of the following K lines contains the integers ai, xi,
and yi (1 ≤ ai ≤ 5, 0 ≤ xi ≤ N - ai, 0 ≤ yi ≤ M - ai), the information of ith obstacle as in

the statement.

Output
Print a single integer, the earliest time to beat the game. If it is impossible to win,

then print 'INF'.

Examples
input
1 7

S.......

.......E

4

1 0 1

1 0 2

1 0 3

1 0 4

output
INF

input
1 7

S.......

16

.......E

3

1 0 1

1 0 2

1 0 3

output
8

input
5 6

......S

.######

..##E.#

.####.#

.##.#.#

......#

1

5 0 0

output
39

Note
In the input format of this problem, the downside direction is the
positive x direction, and the rightward direction is the positive y direction. It is also

possible that there is no obstacle (K = 0).

In the above example, it is impossible to go through 4 obstacles in a row. But it is

possible if there are 3 obstacles.

17

H. Highway Track
time limit per test 1 second

memory limit per test 512 megabytes

input

standard input

output

standard output

There is a circular highway track in Mr. Jeong's hometown. There are N gas stations

in this track, and the stations are numbered from 1 to N. One day, Mr. Jeong

decided to drive one lab around this track, starting from a particular gas station. But

his hometown is a bit strange, so the amount of gas that can be purchased at each

gas station is fixed. Moreover, the sum of them is exactly equal to the amount of

gas needed to drive one cycle around the track. Mr. Jeong is poor, so initially he has

no gas at all. Therefore, if he chooses a bad gas station, his car may run out of gas

before he can arrive to another gas station.

In this example, if he starts from the first station, he can safely turn around the

track. No other gas station satisfies the condition.

Write a program to find the number of gas stations, that if Mr. Jeong starts from the

station, he can safely drive around the track.

Input
The input starts with a line containing an integer N(1 ≤ N ≤ 500, 000), the number of

gas stations. The second line contains N integers, ith of which is an

integer oi(1 ≤ oi ≤ 1, 000, 000), the amount of gas that can be purchased from ith gas

18

station. The third line contains N integers, ith of which is an

integer di(1 ≤ di ≤ 1, 000, 000), the amount of gas needed to drive from ith station

to (i + 1)th station. The sum of oi and the sum of di are equal.

Output
Write a single integer, the number of gas stations that satisfy the condition.

Examples
input
3

2 2 2

1 1 4

output
1

input
4

2 2 2 2

2 2 2 2

output
4

19

I. Impossible Design
time limit per test 1 second

memory limit per test 128 megabytes
There are N pilars around a circle. An integer from 0 to N - 1 is written on each

pillar. Each integer is written exactly once. For every pair of integers (x, y) such

that 0 ≤ x < y ≤ N - 1, we are going to connect the pillar with x written and the pillar

with y written, using a stick that is parallel to the ground and placed at the

height x + y. Of course, we can’t do that if some sticks intersect, so we have to first

check if there is any intersection before actually connecting the pillars. You may

assume that the pillars are tall enough.

Input
The first line consists of a single integer N, the number of pillars.

(2 ≤ N ≤ 1, 000, 000) The next line consists of a permutation of 0, 1, …, N - 1.

Output
Print TAK if there is an intersection, otherwise NIE.

Examples
input
4

0 1 2 3

output
NIE

input
4

0 1 3 2

output
TAK

20

J. Jeong Lab
time limit per test 1 second

memory limit per test 512 megabytes

Mr. Jeong is a geeky chemist. He does a weird experiments with his chemical
solutions. There are N weird 1L solutions in his laboratory, and each of them

contains two kinds of chemical substances, A and B. Let S denote the collection of

his solutions. One of his experiments requires special 1L solution containing A and B,

and he can make the special solution by one of following "mixing strategy".

1. Choose one of the solutions in S and use it with a few treatments.

2. Choose two of the solutions in S, extract some portion from each solution so that

the sum of the liters of them is 1L, and mix them.

You can assume that each of A and B is evenly mixed in every solution. For

example, if we extract 0.3L from a 1L solution with 5 units of A, it will contain 1.5

units of A.

According to the weird theory of Mr. Jeong, it is always better to have more A's and

B's in a solution. Unfortunately, he couldn't figure out whether A is better than B or
not. Anyway, he decided to call, the 1L solution K with the following property, as

"bad solution".

Property: Using the solutions of S and the above "mixing strategy", one can make a

solution that, both the amount of A and the amount of B contained is greater than or
equal to that of K.

However, Mr. Jeong thought that the solutions in his lab are not enough for the
experiments. So we decided to get some new solutions for Mdays. On the ith day,

he does the following.

1. He carefully observes the new 1L solution Ki. If it is a "bad solution", then he

does not buy anything on that day.

2. Otherwise, he buys the solution and adds it to his collection S of the solutions.

It is quite tedious for him to check whether each solution is "bad" or not, so he

needs you help!

21

Input
The input starts with the first line containing the number of solutions N (1 ≤ N ≤ 105)
that were initially in his lab. The ith of the next N lines contains two

integers ai, bi (0 ≤ ai, bi ≤ 109), the amount of the substances A and B, respectively,

contained in the ith solution. In the following line, the integer M (1 ≤ M ≤ 105), the

number of solutions he wants to check, is given. The ith of the following M lines

contains two integers ci, di (0 ≤ ci, di ≤ 109), the amount of A and B, respectively,

contained in the solution Ki.

Output
Print exactly M lines, ith of which contains a string "Yes" if he should buy the

solution Ki, and "No" otherwise.

Examples
input
1

1 1

3

1 3

1 2

2 1

output
Yes

No

Yes

input
2

0 10

10 0

3

4 4

5 5

6 6

output
No

No

Yes

22

K. Kimino Ichi Wa
time limit per test 2 seconds

memory limit per test 256 megabytes

Feeling emptiness as usual, Taki and Mitsuha on their train to office saw each other

through the window. They recognized each other at once, but the routes of the train

were different. Now you are interested in the closest station to the starting point of

the train line, among the stations that Taki and Mitsuha can meet.

Since they use special train tickets, there are the following features on the train

route.

* Railways connecting each station are directed, and there is no loop connecting the

same station.

* All stations on the route except the start and end points have the same number of

incoming railways and outgoing railways.

* The starting point has only one outgoing railway, and the end point has only one

incoming railway.

* For each station, there is at most one route starting from that station and visiting

other stations at most once for each, then return to start point.

* There is always a path from an origin to an arbitrary station, and there is always a

path from an arbitrary station to an end point.

If one reaches the end point, one must leave the train unconditionally and go to

work. Because both want to meet as soon as possible, they keep moving on the

train. The time required to travel between stations are same for every single

railway. As Taki and Mitsuha are connected by special destiny, they can meet each

other if they are on the same station. When the train route, Taki's initial position,

and Mitshua's initial position are given, your job is to find the closest station to the

start point of the train route that Taki and Mitsuha can meet each other.

Input
Each station is represented by a single integer.

On the first line, the number of station N and the number of railways M are given(2

<= N <= 1,000,000). On the next M lines, two integers a and b are given(1 <= a, b

23

<= N) which means there is a railway connecting station a to station b. On the last

line, two different integers s and t are given(1 <= s, t <= N) which are the number

of Taki's initial station and Mitsuha's initial station.

Output
Print the representing number of the station that is closest to the start point of the

train route among the stations Taki and Mitsuha can meet each other. If they cannot

meet, print "MUSUBI".

Example
input
3 2

1 2

2 3

2 1

output
MUSUBI

24

L. Labor
time limit per test 1 second

memory limit per test 128 megabytes

Problem setter Onionpringles made his final contest problem on September 10, and

then go to serve a military service on September 11. Unfortunately, there were so

many strange predecessors in his troops. One of the predecessors found out that

Onionpringles came from KAIST math-sci department, so he ordered Onionpringles a

labor.

"We need a tent. Do you see the two parallel ropes and stakes supporting them?

Now you select 4 stakes to build the tent. In our troops, there is a tradition for

building tent; You sholud select stakes so they form a trapezoid with both basic

angles to be acute or both basic angles to be obtuse. Keep building any trandition

following tents. You can stop when I'm satisfied."

Feeling despair, Onionpringles started to calculating the number of different tents he

need to make in the worst situation. Two tents are different if and only if the set of

stakes that supoorting bottom of tents are different.

The picture shows simple examples. Two examples on above are not satisfying the

conditions while two examples on below are satisfying.

Input
On the first line, the number of stakes N, M on the two straight ropes and the y

coordinates y1, y2 of the rope are given with spaces between them. (2 <= N, M <=

100,000, -1,000,000,000 <= y1, y2 <= 1,000,000,000, y1 ≠ y2) The next N lines

are an integer representing the x-coordinate of the stake on the upper rope, and the

25

M lines that follow are an integer representing the x-coordinate of the stake on the

lower rope, one per line. The x coordinate range is from -1,000,000,000 to

1,000,000,000. Every stake has different position.

Output
Print the remainder of the number of possible trapezoids divided by 1,000,000,007.

Example
input
2 3 33 12

-1

1

-2

0

2

output
1

