
2018
아주대학교
프로그래밍 경시대회
풀이 슬라이드

1A/2A. 맞았는데 왜 틀리죠?

• sample_fail = 샘플 테스트케이스 S1개 중 하나라도 틀렸다면 True

• system_fail = 시스템 테스트케이스 S2개 중 하나라도 틀렸다면 True

출제자: 김현정

1A/2A. 맞았는데 왜 틀리죠?

• sample_fail = 샘플 테스트케이스 S1개 중 하나라도 틀렸다면 True

• system_fail = 시스템 테스트케이스 S2개 중 하나라도 틀렸다면 True

• if(!sample_fail && !system_fail) => Accepted

• else if(sample_fail) => Wrong Answer

• else => Why Wrong!!!

출제자: 김현정

1A/2A. 맞았는데 왜 틀리죠?

• sample_fail = 샘플 테스트케이스 S1개 중 하나라도 틀렸다면 True

• system_fail = 시스템 테스트케이스 S2개 중 하나라도 틀렸다면 True

• if(!sample_fail && !system_fail) => Accepted

• else if(sample_fail) => Wrong Answer

• else => Why Wrong!!!

• 시간복잡도 O(N)

• 이제 이 문제를 풀었으니 맞왜틀은 충분한 검증 후에 하도록 합시다.

출제자: 김현정

1B/2E. 낚이고 낚아라

• 다각형의 모든 영역이 원의 내부에 들어오는지 판단하기 위해서는?
• 원의 중심부터 가장 먼 거리의 점 만을 보면 된다.

출제자: 김동이

• 원 외부로 벗어나는 영역이 존재하기 위해서는 최소 하
나의 점은 원 밖에 있어야 한다.

• 중심부터 가장 먼 점이 원안에 있다면?
ó 어떤 점도 원 밖에 없다 ó 해당 도형은 원 안에 포함
된다.

• 즉, 어떤 도형을 원안에 포함하기 위한 ‘최소의 반지름’은
가장 먼 점까지의 거리다.

1B/2E. 낚이고 낚아라

• 그러므로 최소 K개의 도형을 포함하고 싶다면?
• ‘가장 먼 점까지의 거리’가 R이하가 되는 도형이 K개 이상이 되도록 R을 정하면 된

다.

• ó k번째로 필요 낚시거리가 작은 도형을 포함할 수 있으면 된다.

• 각 도형별로 필요한 ‘낚시 거리’를 계산한다.

• 도형별 낚시거리를 오름차순으로 정렬하여 k번째 거리를 낚시거리 R로
설정한다.

출제자: 김동이

1C. Ah-Choo!

• DTW(Dynamic Time Wrapping) 알고리즘에 대한 설명은 모두 문제에 주어져 있다!

• 재귀적인 점화식을 설계할 수 있다.

• 대응 관계는 교차되지 않으므로, 앞에 있는 시점끼리 대응된 이후에는 미래의 시점과 대응되
지 않는다.

출제자: 김동이

!"

#"

!$%"

#&%"#?

… …
!? !$

#&

?????

• F(i,j)를 다음과 같이 정의해보자
• ó X(i), Y(j)를 대응시켰을 때, X(1) ~ X(i)와 Y(1) ~ Y(j)모두 대응시키는 최소 거리

1C. Ah-Choo! 출제자: 김동이

• Case 1

!(#)와 Y(&)가 모두 이전의 !(# − 1)과 Y(& − 1)과 전혀 대응되지 않는 경우

ó) #, & =) # − 1, & − 1 + ! # − - & .

/0

10

/230

14301?

… …
/? /2

14

• Case 2

!(# − 1)과 Y(&)가 대응되는 경우

ó) #, & =) # − 1, & + ! # − - & .

/0

10

/230

14301?

… …
/? /2

14

• Case 3

!(#)과 Y(& − 1)가 대응되는 경우

ó) #, & =) #, & − 1 + ! # − - & .

/0

10

/230

14301?

… …
/? /2

14

?????

?????

?????

1C. Ah-Choo! 출제자: 김동이

! ", $ = & " − ($) + +
! " − 1, $ − 1
! " − 1, $
! ", $ − 1

• 결과적으로 아래와 같은 재귀식을 설계할 수 있다.

• 모든 파라미터 i, j가 각각 1~N사이의 자연수이므로 모든 파라미터 조합에 대한
상태공간을 정의할 수 있다.

• 즉 Memoization을 사용해 Dynamic Programming을 설계할 수 있다.

1D. 카드 팩 구매하기 출제자: 김동이

• 카드 팩의 크기(각 카드 팩에 포함된 카드 수)를 변수로 둘 경우, 각 카드 팩의 경계나 크기를
결정하기 복잡해진다.

• But, 카드 팩의 크기가 정해져 있다면?

• 해당 크기로 카드 팩 들을 구매할 수 있는지 없는지 판단하는 것은 쉽다.

1D. 카드 팩 구매하기 출제자: 김동이

• 카드 팩의 크기가 정해 졌을 때, 규칙을 만족하는 가장 많은 카드 팩을 만드는 방법은?

• 왼쪽부터 연속한 k개의 범위를 검사해 나간다.

• 서로 다른 k개의 카드를 가진 범위를 찾는다면, 해당 범위는 하나의 카드 팩으로 설정하고 건너뛴
다.

• 사이즈 k인 슬라이딩 윈도우 기법으로 만들 수 있는 카드 팩의 수를 계산한다.

C[1] … C[N]

C[1] … C[N]

C[1] … C[N]

C[1] … C[N]Pack 1

C[1] … C[N]Pack 1

…

1D. 카드 팩 구매하기 출제자: 김동이

• 카드 팩의 크기가 커질 수록, 최대로 만들 수 있는 카드 팩의 수는 작아진다.

• 위와 같은 함수를 정의하면 단소 감소함수가 됨을 알 수 있다.

!

"

#(!)

p = F k :: 카드 팩의 크기가 k일 때 만들 수 있는 최대 카드 팩의 수

" = M
F k ≥ M을 만족하는 최소의 k를 찾으면 된다.

∴변수 k에 대한 Binary Search로 정답을 찾을 수 있다.

모범답안 : https://gist.github.com/waps12b/9edcad62c5265208512b0d6a50fba1bc

1E/2G. 너 봄에는 캡사이신이 맛있단다

• Small:

• 주헌이가 먹을 메뉴 조합의 최소값과 최대값을 지정한다.

출제자: 김현정

1E/2G. 너 봄에는 캡사이신이 맛있단다

• Small:

• 주헌이가 먹을 메뉴 조합의 최소값과 최대값을 지정한다.

• i번째로 스코빌지수가 작은 메뉴를 최소값으로 가지고

• j번째로 스코빌지수가 작은 메뉴를 최대값으로 가지는 메뉴의 수?

• => i, j번째 메뉴는 꼭 포함하고 (i+1 ~ j-1)메뉴로 구성되는
모든 부분집합 개수: 총 2j-i-1 가지

출제자: 김현정

1E/2G. 너 봄에는 캡사이신이 맛있단다

• Small:

• 20~2N의 값을 미리 구해두고, 스코빌지수를 소팅한다.

• 이중반복문을 통해 최소값 i와 최대값 j를 정해

• 모든 (i, j) 쌍에 대해 (val[j] – val[i]) * 2j-i-1의 합이 정답

• 시간복잡도: O(N2)

출제자: 김현정

1E/2G. 너 봄에는 캡사이신이 맛있단다

• Large:

• 모든 조합의 (최대값 – 최소값)의 합은

• (모든 조합의 최대값의 합) – (모든 조합의 최소값의 합)과 같다.

• 최소값과 최대값을 함께 지정하지 말고, 따로 구하자.

출제자: 김현정

1E/2G. 너 봄에는 캡사이신이 맛있단다

• Large:

• i번째 스코빌지수를 최대값으로 가지는 모든 메뉴 조합의 개수:

• => 2i-1가지

• i번째 스코빌지수를 최소값으로 가지는 모든 메뉴 조합의 개수:

• => 2N-i가지

출제자: 김현정

1E/2G. 너 봄에는 캡사이신이 맛있단다

• Large:

• 각 i번째 스코빌지수에 대해 val[i] * (2i-1 - 2N-i)의 합이 정답

• 음수가 나올 수 있는 변수에 대한 모듈러는 아래와 같이 처리합시다.

• => ans = (ans + add_value % MOD + MOD) % MOD

• 시간복잡도: O(NlogN)

• sort: O(NlogN)

• compute answer: O(N)

출제자: 김현정

1F. System Call 출제자: 이주명

• 버퍼의 크기가 증가함에 따라 read 함수의 호출 횟수도 변할 것이다. 이렇게
변할 수 있는 경우는 O(√F)이다.
• 파일의 크기를 F이라고 하면 ⌈F/1⌉, ⌈F/2⌉, …, ⌈F/⌈√F⌉⌉, ⌈F/⌈√F⌉⌉-1, ⌈F/⌈√F⌉⌉-2, …, 1이다. 여

기서 ⌈.⌉는 올림 함수이다. ⌈F/⌈√F⌉⌉≤⌈√F⌉이기 때문에 전체 경우의 수는 2√F 이하가 된다.
• F/⌈√F⌉≤√F이므로 ⌈F/⌈√F⌉⌉≤⌈√F⌉도 성립한다.

1F. System Call 출제자: 이주명

• 각 파일에 대해 read 함수의 호출 횟수가 변하는 구간마다 몇 개씩 감소하는
지를 따로 구할 수 있다.
• 버퍼의 크기가 ⌈√F⌉보다 작거나 같을 때는 직접 계산이 가능하다.

• read 함수의 호출 횟수가 n+1에서 n이 되는 버퍼의 크기 중 최솟값을 x이라고 하자. 그
러면 ⌈F/(x-1)⌉=n+1이고 ⌈F/x⌉=n이다. 앞의 식으로부터 F/(x-1)>n을 추론할 수 있고, 뒤
의 식으로부터 F/x≤n을 추론할 수 있다. 이를 다시 쓰면 x-1<F/n, x≥F/n이다. x-
1<F/n≤x을 만족하는 정수 x는 ⌈F/n⌉이다.

1F. System Call 출제자: 이주명

• 마지막에 가능한 모든 버퍼의 크기에 대해 read 함수의 호출 횟수를 알 수
있다. 이 값을 바탕으로 프로그램의 수행 시간을 계산할 수 있고, 그 중 가장
작은 경우가 정답이다.
• 수행 시간 = 함수의 호출 횟수 x (버퍼의 크기 + T)

1G. 남제 어드벤쳐

Small 부터 보자

• N이 1이라면 ?

출제자: 홍준표

• 현재 위치 1에서 목적지 D까지의 최소 cost를 구해야 한다.

• dp[cur] : cur 까지의 min cost 라 정의

• 이를 저장할 배열 dp[] 를 선언한다.

• dp[1] = 0 , 외의 모든 값을 INF 으로 초기화

0 INF INF INF INF INF INF INF INF INF INF INF
1 2 3 4 5 6 7 8 9 10 11 12

Sample 1 : N = 1, D = 12, L = 3, x[]={8, 2, 5} 예시

1G. 남제 어드벤쳐 출제자: 홍준표

현재 위치 1에서 갈 수 있는 다음의 L칸을 min cost로 갱신, 현재위치는 다음으로 넘어간다.

도착한 다음칸은 다시 갱신될 일이 없으므로 최적임을 보장한다.

0 8 2 5 INF INF INF INF INF INF INF INF
1 2 3 4 5 6 7 8 9 10 11 12

dp[cur+i] = min(dp[cur+i],dp[cur]+x[i]) 의 점화식을 반복하면 ..

0 8 2 5 13 INF INF INF INF INF INF INF
1 2 3 4 5 6 7 8 9 10 11 12

0 8 2 5 4 7 INF INF INF INF INF INF
1 2 3 4 5 6 7 8 9 10 11 12

1G. 남제 어드벤쳐 출제자: 홍준표

최종적으로 다음과 같은 테이블을 얻을 수 있다.

코딩의 편리함을 위해 dp[] 배열을 L개 더 여유롭게 주면 좋다.

dp[D] : D 까지의 min cost 이므로 답은 dp[D]!

시간복잡도 : O(DL)

0 8 2 5 4 7 6 9 8 11 10 13

1 2 3 4 5 6 7 8 9 10 11 12

12 15

1G. 남제 어드벤쳐

N이 1 이상 이라면 ?

출제자: 홍준표

• L개의 칸에 사람이 있음을 bit를 통해 표현할 수 있다.

• 첫 번째 사람이 이동한 상태 next 또한 bit를 통해 표현할 수 있다.

• 이렇게 발생하는 코스트를 mat[cur][next] 에 표현할 수 있다.

• 만들어진 mat : 1 만큼 이동했을 때의 상태 -> 상태 별 최소 코스트 라 정의할 수 있다.

1G. 남제 어드벤쳐

N이 1 이상 이라면 ?

출제자: 홍준표

o o
cur : 1100

o o
next : 1010

o o
cur : 1010

o o
next : 0101

o o
cur : 0110

o o
next : 1100

• 첫 번째 칸에 옮겨갈 사람이 없으므로 shift만 한다. 이 때의 cost는 0.

x[3]

x[4]

0

• 상태는 2 ¹² = 4096 에 3승을 더..?

• 내가 봐야할 상태는 LCN 개 뿐 ! 12C3 = 220

1G. 남제 어드벤쳐

1 칸 만큼 이동했을 때의 최소 코스트 !"# 을 구했다.

출제자: 홍준표

• 우리의 목적은 D 만큼 이동했을 때의 최소 코스트 mat

• 구해둔 mat 에 mat 을 곱하면 어떨까 ?

플로이드-워셜 알고리즘

!"#$[cur][next] = min(!"#[cur][mid] + !"#[mid][next])

1G. 남제 어드벤쳐 출제자: 홍준표

목표는 !"#$%&[cur][cur]

• 큰 수 거듭 제곱 아이디어로 log(D-N) 번만 곱셈 수행

• 시간복잡도 : + ,
& -./0

o o o o o o
1 2 3 … D-2 D-1 D

D 칸 이동D-N 칸 이동

1H. 그날의 너

환경적 요인은 변수로, 복합적 요인은 연산자로 계산 그래프(Computational Graph)를
그릴 수 있다.

• 문제의 조건에 의해서 그래프는 항상 트리 형태가 된다.

• HAPPY를 루트로 가지는 Sub-Tree만 고려하자.

• 이외의 노드들은 어차피 영향력이 항상 0이니까

-

18
HAPPY

MONEY

/

SICK18

PAIN

+

HEALTH/

MIND

-3

BODY

17

LOVE

5

SAD

출제자: 김동이

1H. 그날의 너

리프 노드들부터 위상 정렬을 이용해 각 요인들의 수치(출력)을 알 수 있다.

-

18
HAPPY

MONEY

/

SICK18

PAIN

+

HEALTH/

MIND

-3

BODY

17

LOVE

5

SAD

17
1

17
5

5
1

−3
1

2
5

18
1

45
1

18
1

63
1

출제자: 김동이

1H. 그날의 너

일단 행복(HAPPY)의 영향력은 무조건 1이다.

-

18
HAPPY

MONEY

/

SICK18

PAIN

+

HEALTH/

MIND

-3

BODY

17

LOVE

5

SAD

17
1

17
5

5
1

−3
1

2
5

18
1

45
1

18
1

63
1

1
1

출제자: 김동이

1H. 그날의 너

Chain Rule에 의해서 각 요인들은 아래 두 가지를 안다면 행복도에 대한 영향력을 계산할 수
있다.

• 부모(연산자)의 행복도에 대한 순간 변화율

• 자기 자신의 부모에 대한 순간 변화율

즉, 최고 조상 노드(HAPPY)의 영향력을 알고 있으므로, 역으로 계산해 나갈 수 있다.

!"
!# =

̇!"
!& '

!&
!#

출제자: 김동이

1H. 그날의 너

각 연산자별로 Chain Rule을 이용해 루트부터 역으로 미분해 나간다.

!
"

#
$

/

SICK
#
$

PAIN

*

HEALTH…

…

…

HAPPY 1
1

&
'

#" + $!
$"

)*+,--.
)*+/,01+

=)*+,--.
)*3456

7)*3456
)*+/,01+

= &
' 7 {

#
$ 7 −1 7 !

"
:;
}

= −&#"
;

'$!;

출제자: 김동이

1H. 그날의 너

요약하자면,

1. 위상 정렬을 사용해 리프 노드부터 각 요인의 수치를 계산해 나간다.

2. HAPPY 노드부터 역으로 Chain Rule로 편미분을 이용해 순간 변화율을 계산한다.

Deep Learning에서 사용되는 신경망의 Feed forward & Back propagation 기법이다.

출제자: 김동이

2B. Router

• 라우터의 버퍼는 큐라고 하는 자료구조의 형태이다. 큐를 구현하는 방법에 대해서는 아래
링크를 참고하자.

• https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

• https://www.geeksforgeeks.org/queue-set-2-linked-list-implementation/

• 입력이 0보다 큰 경우는 enqueue 연산을 수행한다. 이때 큐에 들어있는 원소의 수가 버퍼
의 크기와 같을 경우 버퍼가 꽉 찼다는 의미이므로 아무 연산도 수행하지 말아야 한다.

• 입력이 0인 경우는 dequeue 연산을 수행한다.

• 입력이 -1이면 큐에 아무것도 남지 않을 때까지 dequeue 연산을 수행하며 결과를 화면에 출력하면
된다.

출제자: 이주명

https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/
https://www.geeksforgeeks.org/queue-set-2-linked-list-implementation/

2C. Hashing

• 해시 값을 구하는 식은 문제에 나와있다. 이를 구하는 프로그램을 작성하면 된다.

• 주의할 점이 있는데, C언어에서 int형 변수의 크기는 4바이트이며 최대 231-1=2,147,483,647
까지 표현할 수 있다. 즉, 모든 연산의 중간 결과가 이 범위를 넘어서는 안 된다는 것이다.
이보다 큰 long long형 변수의 경우 8바이트로 최대 263-1=9,223,372,036,854,775,807까지
표현이 가능하다. 하지만 문제의 식을 보면 나머지 연산을 하기 전 값이 최대가 되는 문자열
은 50개의 z로 이루어져 있고, 그 값은 26x(3150-1)/30이다. 이는 long long 변수로 표현할
수 있는 범위를 훨씬 넘는다.

• 하지만 만약 각 자릿수를 처리하면서 나머지 연산을 수행한다면 중간 결과로 나올 수 있는
값은 아무리 커봐야 rM+26이다. 그러므로 h1=al-1, hi=(rhi-1+al-i) mod M (i>1)이라는 수열을
정의하고 계산하면 hl=H이 답이다.

출제자: 이주명

2D. 싱크홀

Small 부터 보자

• 한번만 부딪힌다면 ?

• 공기 저항이 없으므로 벽과 벽 사이를
이동하는 데 걸리는 시간 ! = #/%

• 주어진 공식에 따라 돌이 수평방향으로
이동한 거리 & = 5!(

• H보다 s가 크면 바닥에 먼저,

• 작으면 벽에 먼저 부딪힌다.

• ans =) > + ? 1: 0 • 시간복잡도 : 0 1

출제자: 홍준표

2D. 싱크홀

• 한번으로 끝나지 않는다면 ?

• 문제의 조건에 따라 부딪히면 V 가 0.8 배가 된다.

• 새로 구해진 V 로 이동거리 s를 새로 구해 총 이동거리 D에 누적 시킨
다.

• 총 이동거리 D 가 H 보다 커질 때 까지 위의 과정을 반복한다.

• 1회 반복은 곧 1회 충돌을 의미한다.

• t 는 V 에 반비례 하기 때문에 V 가 감소함에 따라 t 는 증가한다.

• 이동거리 s 는 t 가 증가함에 따라 기하급수적으로 증가한다.

• 따라서 총 이동거리 D 는 빠르게 H 에 도달한다.

• 시간복잡도 : ! "#$%

출제자: 홍준표

2F. 준표의 조약돌

• Small:

• [i, j] 구간의 흰 돌과 검은 돌의 개수를 어떻게 구할 수 있을까?

출제자: 김현정

2F. 준표의 조약돌

• Small:

• [i, j] 구간의 흰 돌과 검은 돌의 개수를 어떻게 구할 수 있을까?

• bsum[i] = i번째 돌까지 검은 돌의 개수

• bsum[i] = bsum[i – 1] + (dol[i] == ‘B’)

• 로 정의할때, [i, j] 구간의 검은 돌 개수: bsum[j] – bsum[i – 1]

출제자: 김현정

2F. 준표의 조약돌

• Small:

• [i, j] 구간의 흰 돌과 검은 돌의 개수를 어떻게 구할 수 있을까?

• bsum과 마찬가지로 흰 돌에 대한 wsum을 미리 계산해두면

• 구간 [i, j]에 대해 O(1)만에 흰 돌과 검은 돌의 개수를 구할 수 있다.

• 모든 구간 중 조건을 만족하는 (j – i + 1)이 가장 긴 길이가 답

출제자: 김현정

2F. 준표의 조약돌

• Small:

• 시간복잡도: O(N2)
• compute bsum, wsum: O(N)

• search all [i, j]: O(N2)

출제자: 김현정

2F. 준표의 조약돌

• Large:

• [i, j] 구간에 검은돌이 b개, 흰돌이 w개 있다면

• b <= B: 구간을 [i, j+1]로 확장

• b > B: 구간을 [i+1, j]로 축소

• 구간을 움직일때, 이번에 확장되거나 축소되는 돌만 확인하여 개수를 조정

• 위처럼 i, j를 이동하며 w >= W가 되는 구간 중
(j – i + 1)의 길이의 최대값이 정답이 된다.

출제자: 김현정

2F. 준표의 조약돌

• Large:

• 시간복잡도: O(N)
• i의 이동량: O(N)

• j의 이동량: O(N)

출제자: 김현정

