
A. Aztec Diamond

To solve this problem, one can define recursive functions that makes a vertical
block at given coordinate. Here we provide one way to do it. Refer to the below
image for terminologies about directions and coordinates.

Function ‘foo’ takes the coordinate, then makes it the lower part of a vertical
block. Function ‘rotate’ is where the actual rotation takes place. It takes (r, c), the
lower left part of the 2*2 square, and rotates the square. It raises an error if the
given coordinate is not the upper left part of a 2*2 square. arr is the 2n*2n
matrix containing the current state of the diamond.

To make the whole process work, the order of calling the ‘foo’ function is
important. Here, we call the function from left to right, from bottom to top:

void foo(int r, int c)
{

if(arr[r][c]=='D') return;
assert(arr[r][c] == 'L');
if(arr[r-1][c]=='L'){

rotate(r-1, c);
}
else if(arr[r-1][c]==’D’){

foo(r-1, c+1);
rotate(r-2, c);
rotate(r-1, c);

}
return;

}

The order in which foo is called (excluding recursive calls).
In fact, only the left half is necessary; if the left half is full of vertical blocks,

the right half must also be full of vertical blocks.
It can be seen that when each cell is called, it must be either

L or D. If the call is not a recursive one, all blocks on the left
or below are oriented vertically, so the current cell cannot be U
or R. If the call is a recursive one (the orange cell in the image
on the right), the previously called cell (gray) is horizontal, and
the cell above it is vertical, so the orange cell is L or D.

Now, if the cell is L, call the rotate function on the cell above it. Otherwise, run
a recursion and two rotations:

The gray cell in the above image is the initial cell where the function is called.
Can it get out of bounds? No, it will never reach the upper right boundary.

Remind that initial call starts from somewhere in the left half. If we reach the
upper right boundary, the cell cannot be L or D. This contradicts with the above
observation that the called cell must be L or D.

If the maximum recursion depth is , there are at most rotations. There
are cells whose maximum recursion depth is , so there are at most

 ≤ rotations.

The tightest bound is . Most implementations (including the
above approach) will give an optimal solution. For more information, refer to the
paper: https://arxiv.org/pdf/math/9201305.pdf

Recursive call.

B. Break Oven, Run Cookie!

The problem would have been much simpler if multiple cookies could be on one
cell and they could still move after reaching a hole: to determine if all cookies can
escape in seconds, connect cookie to hole iff it can reach there in
seconds, and run a bipartite matching. All cookies can escape iff the maximum
matching is . Use binary search to find the minimum possible . In fact, you can
try this variant at https://www.acmicpc.net/problem/1348.

We can’t use the above solution because of the additional requirements. But not
all is lost; if we can somehow implement the requirements in the flow model, we
can run maximum flow to determine if all cookies can escape in seconds! And to
do this, we should determine the position of each cookie at each second, not just
which cookie goes to which hole.

Make layers of grids, each layer representing each second of the grid. Use two
nodes per cell so that each cell is used only once. Connect the source node to the
cookies in the first layer. If the cell is weak, a cookie on that cell cannot move
anymore, so connect it to the same cell in the next layer. Otherwise, connect it to
the same cell and each adjacent cell in the next layer. Finally, connect the weak
cells in the last layer to the sink node. All capacities are . If the maximum flow
equals the number of cookies, then all cookies can escape in seconds.

What is an upper bound? Let’s assume there is an answer such that for
 ≤ ≤ , cookie goes to hole . Then we can think of other answer that
every path of cookie is its shortest path to the corresponding hole. In addition, if
the paths of the different cookies make up a cycle, it is always better to remove
that, so do the preprocessing.

Now, the state of the cookies for each time can be expressed in a tree form.
Each node in the tree represents a cell that any cookie is currently placed or
intended to go next time. If a cookie at cell X want to go adjacent cell Y(whether
other cookie is placed or not) next time, set Y to be the parent of X in the tree.
In this case, each root of the tree always represents a cell without a cookie, and
all other nodes represent cell with a cookie.

An example of the tree representation of the grid.
 We can guarantee that there is no any cycle due to the preprocessing step.

Only cells that are adjacent on the grid can be connected in tree form. The
maximum number of cookies trying to go to a cell is 3(Otherwise there would be a
cycle), so the branching factor of tree is also up to 3.

Now we can see the least number of cookies that can move to next position of
its path. If you take a path from root to any leaf on tree, it’s possible to all
cookies included in the path move to the next cell, and all other cookies stay still.
Therefore, at least [the sum of maximum depth of each tree] cookies can move
next time. This value is minimized when all cookies belong to one tree(=every
cookie has conflicting relationships), and the tree is balanced. That is, when there
are n cookies remained, at least log cookies can go to the next cell.

So how long does it take from the initial state to the time the last cookie
escapes? The length of each path that cookie goes to the corresponding hole
 is up to , and the worst case is that cookies with the shortest
remaining path move first. When do the simulation with this condition and the
value of is 100, it can be seen that all of the cookies can be escaped within
1000 seconds in all possible cases. If you set the upper bound of the binary
search to 1000, C++ solution takes close to 1 second for execution. However, as we
used some strong assumptions that cannot happens in all possible cases, we can
achieve stable execution times with smaller upper bound.

Despite the suggested upper bound, the actual answer is generally much smaller.
Based on this fact, you can check if all cookies can escape in long enough time to
avoid TLE (in case you use something like Python). From each cookie, run a BFS
to determine which hole it can escape through. Connect each cookie to its usable
holes, and run a bipartite matching.

C. Coke Challenge

Each person should drink coke for seconds. Every seconds, the
-th person drinks for seconds. Let’s call it a “cycle”. If is a multiple of ,
they need cycles, but the last seconds of the last cycle is unnecessary. It
means it takes seconds. Otherwise, they need ⌊⌋cycles and
more seconds, where is the remainder from dividing by .

Compute how many seconds each person needs to finish their coke, and output
the minimum.

D. Dev, Please Add This!

Imagine actually playing the game. There is a moment where you cross a
“one-way road”: this means when you roll the ball, sometimes you can’t go back
to where the ball originally was. In the first example below, you can freely move

between the four red cells, but not after collecting one of the stars:

That means the red cells belong to the same strongly connected component. The
first step is to find the SCC’s. For simplicity, let’s say SCC is the SCC where the
ball is originally placed on.

Suppose the ball is placed on SCC . The player can safely collect all stars that
can be collected while staying on SCC . We would place a star on a few SCC’s
and require that the ball visit at least one of them. But how many SCC’s for each
star? At most two: one that corresponds to the left/right end of the star (green
triangle in the below image), and one that corresponds to the up/down end of the
star (blue square in the below image). Of course, you can also collect the star
while going from SCC to SCC , but that is equivalent to collecting it while
staying in SCC , which must be either the left/right end or up/down end of the
star.

To collect a star, the ball must visit at least one of those two SCC’s. This gives
a clue for a 2-SAT approach. Denote as true if the ball visits SCC , false
otherwise. Then:

1. (because the ball is initially on SCC)
2. if SCC cannot be reached from SCC
3. ∨ if not both of SCC and can be reached
4. ∨ if the ball must be on SCC or to collect a star
It takes time to construct the formulae of the third type, so it might look

like it won’t work in time. But it does work because in this graph. Solve
the 2-SAT problem and we get the answer.

There is another solution that constructs a 2-SAT formula using horizontal and
vertical segments of the grid. (Thanks to cubelover, who used this during the open
contest)

E. Expectation of Games

Denote as the expected number of die rolls when the token is placed at the
-th cell (outside of the board is the th cell). Denote as the resulting cell
when the token just reaches : if , if there is a snake or a ladder that
starts at and ends at , and otherwise. Then we can construct a system of

linear equations as

 . Use Gaussian Elimination to find . If the

system is unsolvable, output .
One catch is that using double would result in wrong answer. Note that the

answer can get very large. For example, set then place a
snake from to , for ≤ ≤ . One would have to survive the
probability times in a row! Therefore, it’s not unreasonable to assume that you
would somewhere divide by a very small number during the Gaussian Elimination
in order to get the large number.

It is indeed the reason why the error happens. In one of the test data, using the
system of equation constructed above, you would divide by . It
was verified that long double can solve the problem, but unfortunately, some
codes that used long double still got the wrong answer (though some of them
made another mistake).

On a side note, the expected number of die rolls in the example mentioned
above is about . The largest answer in the test data is
.

F. Faster Sorting

Define as the last index of the non-decreasing subarray starting from the
-th element, and similarly but with the decreasing subarray. Then
is , and is if the next element is larger than or equal to the -th,
otherwise . The same reasoning goes to .

Now, we can process each query in , since each subarray can be
obtained in . However, it exceeds the time limit if all values of each
query are very small. Save the processed values and answer duplicate queries
immediately to avoid the repetition.

The time complexity is ⋯ = log .

G. God Game

After seconds, all obstacles come back to their initial
position. It means there are at most possible states of the game.

First, let’s not consider the collisions at non-integer time; obstacles and the

player “warp” instead of moving. Make an by by grid, and find which
cell has an obstacle on each layer. This can be done by simulating the trajectory
of each obstacle. For each obstacle, determine its position at each second, and
indicate the presence of an obstacle at the corresponding cell and layer.

Then run a BFS: every time you move or stay, you automatically move to the
next layer. (If you are on the last layer, you move back to the first.)

Since collisions can also happen at non-integer time, we have to save which
obstacle is moving in which direction. One way to do it is bitmask: is a wall,
is an obstacle moving left, is an obstacle moving right, etc. The player cannot
advance to the next cell if it moves against an obstacle. This way you can solve
the problem using the same grid.

H. Highway Track

Let be the remaining amount of fuel right after reaching the -th gas
station (before refueling), starting from the -th gas station. It can be negative,
but keep computing anyway. Let min . is an appropriate starting
point if and only if ≥ . In fact, is at most since .

Compute all for . What happens when we compute all ? Nothing
except all values decrease by , a constant. Therefore .
Similarly, . If , that means . Therefore the
answer is the number of that equals .

Perhaps the best way to understand the solution is to draw the graph of .
When the starting station changes, the shape does not change. Instead you push
the graph upwards or downwards, “calibrating” it at the new starting station. To
make the graph placed above the x-axis, you must calibrate it at the lowest point.

I. Impossible Design

Run a naive solution on short permutations, and you’ll notice something strange.
There is a pattern in a permutation without intersecting sticks. Specifically, the
input has no intersecting sticks if and only if it can be constructed this way:

1. Take two positive integers , such that ≤ and gcd .
2. Write all integers ≡ mod in order, then ≡, then ≡, …, finally

≡ . For example, if we take , we get the permutation 0 5 10
2 7 4 9 1 6 3 8.

3. Rotate the permutation. That is, take the last numbers and put them on the
beginning of the permutation.

Once you figure this out, coding the solution is trivial. Determine and from
the given permutation and check if the constructed permutation equals the input.

But how do we actually prove that the permutations constructed this way are

precisely all the permutations without intersecting sticks? This was actually the 6th
problem in IMO 2013. Since the solution is quite long, we will provide a link to two
official solutions (page 33): http://imo-official.org/problems/IMO2013SL.pdf

J. Jeong Lab

Let and be the maximum amount of A and B in , respectively. Now
let’s consider each solution as a point in a coordinate plane, where coordinate
is the amount of A and coordinate is the amount of B in the solution. Assume
that the collection contains , , and . Then it is not difficult to
observe that a solution is “bad” if and only if the representing point lies in the
boundary and the interior of the convex hull consisting of points in .

Suppose that Mr. Jeong only checks whether the solution is bad or not and does
not add the his collection (i.e. is invariant). Then the queries are simply
asking whether the given point lies in the convex hull. To answer these queries,
we sort the points in in a counter-clockwise manner with respect to the origin.
When the query point is given, we binary search the sorted points and find
the appropriate position of as if we are trying to insert the point. (This can
be done by functions such as lower_bound() in C++.) Then we check two points
adjacent to the found position, and it is enough to check if the new point lies
inside or outside the triangle consisting of that two points and the origin.

Now let’s consider our original problem. Here, the set varies, so we need to
update the convex hull efficiently. This is called dynamic convex hull problem, and
it is difficult in general. But here, only the points in the first quadrant is added,
and there is no delete operation, so the life becomes easier. Suppose we are trying
to insert the point . Similar to the previous paragraph, we first find the
appropriate position to insert. Now we should “really” insert the point, but also we
should delete some points that does not belong to the hull anymore. Observe that
if we should delete the point in the hull, then all the points lying between
 and should be deleted too. So we could simply start from the position
that we are trying to insert to, and iterate the sorted data structure to the front
and the back until we can delete the point from the structure. We could use a
data structure like red black tree (set in C++ and TreeSet in Java) to efficiently
insert and delete from the sorted data. Note that we should also update and
 .

Now let’s check the time complexity. Using techniques like Graham scan, the
convex hull can be built in log time. Throughout the queries, we delete no
more than points, so it takes log time with red black tree
for all queries. Therefore, the total time complexity is log and
it is enough for the limit ≦ and ≦ .

http://imo-official.org/problems/IMO2013SL.pdf

K. Kimino Ichi Wa〭

First, realize that a graph satisfying the requirements is very specific. It is just a
path, with at most one simple cycle attached to each intermediate vertex. For
example:

Therefore, the length of a walk from a vertex A from another vertex B is (The
length of the shortest path from A to B) + (A linear combination of the lengths of
the cycles that shares a point with that path). Denote , as the starting point
of Taki and Mitsuha, as the shortest path length from V to T, and , , …,
 as the lengths of the cycle in the path. Define and , …, similarly but
from V to M. The problem of deciding if Taki and Mitsuha can meet at V is then
equivalent to answering “Is there a non-negative integer solution such

that

?”

WLOG assume ≤ . That is, M is farther than T from V. If Taki and
Mistuha are to meet at V, Taki should spend time in a cycle, so . Combined
with ≤ , we get . From this, we prove that there is a non-negative
solution iff is divisible by gcd⋯⋯.

 is a multiple of , so must also be a multiple of if

there is a solution. If is a multiple of , we can find an integer solution
using extended euclidean algorithm. If one of the unknowns (say) is negative, we
can make it larger by picking any , then adding from and from . The
equality still holds since . By repeating this process,
we obtain a non-negative integer solution. QED.

Now, for each vertex V, we check if Mitsuha and Taki can meet at V by
computing the gcd of cycle lengths on the path from V to T, and from V to M.
Among those vertices, pick the vertex closest to the starting station. It is unique

since it must be an intersection of the path and a cycle.

L. Labor

Count the number of trapezoids with lower acute angles. The other type (upper
acute angles) can be counted by switching the ropes and doing the same thing.

Let be the number of lower points placed at the left side of the -th upper
point. Define similarly, but at the right side. Then we have to compute

. This equals

. Now, let

. The formula then

becomes

 . If we already have the values of and , the

counting can be done in linear time.
How do we compute ? Sort all the points; in case of a tie, The upper point

comes first. Then sweep the points, keeping track of the number of lower points
encountered. When you encounter an upper point, update . You can also
compute here: just subtract from , and subtract more if the next
point has the same x coordinate. Computing is much easier. Just set
and .

It can be seen that the y-coordinates of the ropes are red herring that have no
effect on the answer.

