
A. Aztec Diamond

To solve this problem, one can define recursive functions that makes a vertical 
block at given coordinate. Here we provide one way to do it. Refer to the below 
image for terminologies about directions and coordinates.

Function ‘foo’ takes the coordinate, then makes it the lower part of a vertical 
block. Function ‘rotate’ is where the actual rotation takes place. It takes (r, c), the 
lower left part of the 2*2 square, and rotates the square. It raises an error if the 
given coordinate is not the upper left part of a 2*2 square. arr is the 2n*2n 
matrix containing the current state of the diamond.

To make the whole process work, the order of calling the ‘foo’ function is 
important. Here, we call the function from left to right, from bottom to top:

void foo(int r, int c)
{

if(arr[r][c]=='D') return;
assert(arr[r][c] == 'L');
if(arr[r-1][c]=='L'){

rotate(r-1, c);
}
else if(arr[r-1][c]==’D’){

foo(r-1, c+1);
rotate(r-2, c);
rotate(r-1, c);

}
return;

}



The order in which foo is called (excluding recursive calls).
In fact, only the left half is necessary; if the left half is full of vertical blocks, 

the right half must also be full of vertical blocks.
It can be seen that when each cell is called, it must be either 

L or D. If the call is not a recursive one, all blocks on the left 
or below are oriented vertically, so the current cell cannot be U 
or R. If the call is a recursive one (the orange cell in the image 
on the right), the previously called cell (gray) is horizontal, and 
the cell above it is vertical, so the orange cell is L or D.

Now, if the cell is L, call the rotate function on the cell above it. Otherwise, run 
a recursion and two rotations:

The gray cell in the above image is the initial cell where the function is called.
Can it get out of bounds? No, it will never reach the upper right boundary. 

Remind that initial call starts from somewhere in the left half. If we reach the 
upper right boundary, the cell cannot be L or D. This contradicts with the above 
observation that the called cell must be L or D.

If the maximum recursion depth is , there are at most    rotations. There 
are   cells whose maximum recursion depth is , so there are at most 


  



       ≤   rotations. 

The tightest bound is   . Most implementations (including the 
above approach) will give an optimal solution. For more information, refer to the 
paper: https://arxiv.org/pdf/math/9201305.pdf

Recursive call.



B. Break Oven, Run Cookie!

The problem would have been much simpler if multiple cookies could be on one 
cell and they could still move after reaching a hole: to determine if all cookies can 
escape in  seconds, connect cookie   to hole   iff it can reach there in  
seconds, and run a bipartite matching. All cookies can escape iff the maximum 
matching is  . Use binary search to find the minimum possible . In fact, you can 
try this variant at https://www.acmicpc.net/problem/1348.

We can’t use the above solution because of the additional requirements. But not 
all is lost; if we can somehow implement the requirements in the flow model, we 
can run maximum flow to determine if all cookies can escape in  seconds! And to 
do this, we should determine the position of each cookie at each second, not just 
which cookie goes to which hole.

Make layers of grids, each layer representing each second of the grid. Use two 
nodes per cell so that each cell is used only once. Connect the source node to the 
cookies in the first layer. If the cell is weak, a cookie on that cell cannot move 
anymore, so connect it to the same cell in the next layer. Otherwise, connect it to 
the same cell and each adjacent cell in the next layer. Finally, connect the weak 
cells in the last layer to the sink node. All capacities are . If the maximum flow 
equals the number of cookies, then all cookies can escape in  seconds.

What is an upper bound? Let’s assume there is an answer such that for
 ≤  ≤ , cookie  goes to hole  . Then we can think of other answer that 
every path of cookie is its shortest path to the corresponding hole. In addition, if 
the paths of the different cookies make up a cycle, it is always better to remove 
that, so do the preprocessing.

Now, the state of the cookies for each time can be expressed in a tree form. 
Each node in the tree represents a cell that any cookie is currently placed or 
intended to go next time. If a cookie at cell X want to go adjacent cell Y(whether 
other cookie is placed or not) next time, set Y to be the parent of X in the tree. 
In this case, each root of the tree always represents a cell without a cookie, and 
all other nodes represent cell with a cookie.

An example of the tree representation of the grid.
 We can guarantee that there is no any cycle due to the preprocessing step. 



Only cells that are adjacent on the grid can be connected in tree form. The 
maximum number of cookies trying to go to a cell is 3(Otherwise there would be a 
cycle), so the branching factor of tree is also up to 3.

Now we can see the least number of cookies that can move to next position of 
its path. If you take a path from root to any leaf on tree, it’s possible to all 
cookies included in the path move to the next cell, and all other cookies stay still. 
Therefore, at least [the sum of maximum depth of each tree] cookies can move 
next time. This value is minimized when all cookies belong to one tree(=every 
cookie has conflicting relationships), and the tree is balanced. That is, when there 
are n cookies remained, at least log cookies can go to the next cell.

So how long does it take from the initial state to the time the last cookie 
escapes? The length of each path that cookie  goes to the corresponding hole 
  is up to  , and the worst case is that cookies with the shortest 
remaining path move first. When do the simulation with this condition and the 
value of  is 100, it can be seen that all of the cookies can be escaped within 
1000 seconds in all possible cases. If you set the upper bound of the binary 
search to 1000, C++ solution takes close to 1 second for execution. However, as we 
used some strong assumptions that cannot happens in all possible cases, we can 
achieve stable execution times with smaller upper bound.

Despite the suggested upper bound, the actual answer is generally much smaller. 
Based on this fact, you can check if all cookies can escape in long enough time to 
avoid TLE (in case you use something like Python). From each cookie, run a BFS 
to determine which hole it can escape through. Connect each cookie to its usable 
holes, and run a bipartite matching.

C. Coke Challenge

Each person should drink coke for     seconds. Every   seconds, the 
-th person drinks for  seconds. Let’s call it a “cycle”. If  is a multiple of , 
they need  cycles, but the last  seconds of the last cycle is unnecessary. It 
means it takes    seconds. Otherwise, they need ⌊⌋cycles and  
more seconds, where  is the remainder from dividing  by .

Compute how many seconds each person needs to finish their coke, and output 
the minimum.

D. Dev, Please Add This!

Imagine actually playing the game. There is a moment where you cross a 
“one-way road”: this means when you roll the ball, sometimes you can’t go back 
to where the ball originally was. In the first example below, you can freely move 



between the four red cells, but not after collecting one of the stars:

That means the red cells belong to the same strongly connected component. The 
first step is to find the SCC’s. For simplicity, let’s say SCC  is the SCC where the 
ball is originally placed on.

Suppose the ball is placed on SCC . The player can safely collect all stars that 
can be collected while staying on SCC . We would place a star on a few SCC’s 
and require that the ball visit at least one of them. But how many SCC’s for each 
star? At most two: one that corresponds to the left/right end of the star (green 
triangle in the below image), and one that corresponds to the up/down end of the 
star (blue square in the below image). Of course, you can also collect the star 
while going from SCC   to SCC  , but that is equivalent to collecting it while 
staying in SCC , which must be either the left/right end or up/down end of the 
star.

To collect a star, the ball must visit at least one of those two SCC’s. This gives 
a clue for a 2-SAT approach. Denote  as true if the ball visits SCC , false 
otherwise. Then:

1.   (because the ball is initially on SCC )
2.  if SCC   cannot be reached from SCC 
3. ∨ if not both of SCC   and   can be reached
4. ∨ if the ball must be on SCC   or   to collect a star
It takes  time to construct the formulae of the third type, so it might look 

like it won’t work in time. But it does work because    in this graph. Solve 
the 2-SAT problem and we get the answer.

There is another solution that constructs a 2-SAT formula using horizontal and 
vertical segments of the grid. (Thanks to cubelover, who used this during the open 
contest)

E. Expectation of Games



Denote  as the expected number of die rolls when the token is placed at the 
-th cell (outside of the board is the th cell). Denote  as the resulting cell 
when the token just reaches  :  if   ,   if there is a snake or a ladder that 
starts at   and ends at  , and   otherwise. Then we can construct a system of 

linear equations as    
   

 



 . Use Gaussian Elimination to find  . If the 

system is unsolvable, output  .
One catch is that using double would result in wrong answer. Note that the 

answer can get very large. For example, set     then place a 
snake from    to  , for  ≤  ≤ . One would have to survive the  
probability  times in a row! Therefore, it’s not unreasonable to assume that you 
would somewhere divide by a very small number during the Gaussian Elimination 
in order to get the large number.

It is indeed the reason why the error happens. In one of the test data, using the 
system of equation constructed above, you would divide by . It 
was verified that long double can solve the problem, but unfortunately, some 
codes that used long double still got the wrong answer (though some of them 
made another mistake).

On a side note, the expected number of die rolls in the example mentioned 
above is about . The largest answer in the test data is 
.

F. Faster Sorting

Define   as the last index of the non-decreasing subarray starting from the 
-th element, and   similarly but with the decreasing subarray. Then  
is , and   is    if the next element is larger than or equal to the -th, 
otherwise . The same reasoning goes to .

Now, we can process each query in , since each subarray can be 
obtained in . However, it exceeds the time limit if all   values of each 
query are very small. Save the processed values and answer duplicate queries 
immediately to avoid the repetition.

The time complexity is ⋯  =  log .

G. God Game

After     seconds, all obstacles come back to their initial 
position. It means there are at most   possible states of the game.

First, let’s not consider the collisions at non-integer time; obstacles and the 



player “warp” instead of moving. Make an   by   by   grid, and find which 
cell has an obstacle on each layer. This can be done by simulating the trajectory 
of each obstacle. For each obstacle, determine its position at each second, and 
indicate the presence of an obstacle at the corresponding cell and layer.

Then run a BFS: every time you move or stay, you automatically move to the 
next layer. (If you are on the last layer, you move back to the first.)

Since collisions can also happen at non-integer time, we have to save which 
obstacle is moving in which direction. One way to do it is bitmask:  is a wall,   
is an obstacle moving left,   is an obstacle moving right, etc. The player cannot 
advance to the next cell if it moves against an obstacle. This way you can solve 
the problem using the same grid.

H. Highway Track

Let  be the remaining amount of fuel right after reaching the -th gas 
station (before refueling), starting from the -th gas station. It can be negative, 
but keep computing anyway. Let   min .  is an appropriate starting 
point if and only if ≥ . In fact,  is at most  since   .

Compute all  for   . What happens when we compute all ? Nothing 
except all values decrease by , a constant. Therefore    . 
Similarly,    . If   , that means   . Therefore the 
answer is the number of   that equals .

Perhaps the best way to understand the solution is to draw the graph of . 
When the starting station changes, the shape does not change. Instead you push 
the graph upwards or downwards, “calibrating” it at the new starting station. To 
make the graph placed above the x-axis, you must calibrate it at the lowest point.

I. Impossible Design

Run a naive solution on short permutations, and you’ll notice something strange. 
There is a pattern in a permutation without intersecting sticks. Specifically, the 
input has no intersecting sticks if and only if it can be constructed this way:

1. Take two positive integers ,   such that   ≤   and gcd  .
2. Write all integers ≡ mod  in order, then ≡, then ≡, …, finally 

≡ . For example, if we take   , we get the permutation 0 5 10 
2 7 4 9 1 6 3 8.

3. Rotate the permutation. That is, take the last  numbers and put them on the 
beginning of the permutation.

Once you figure this out, coding the solution is trivial. Determine  and  from 
the given permutation and check if the constructed permutation equals the input.

But how do we actually prove that the permutations constructed this way are 



precisely all the permutations without intersecting sticks? This was actually the 6th 
problem in IMO 2013. Since the solution is quite long, we will provide a link to two 
official solutions (page 33): http://imo-official.org/problems/IMO2013SL.pdf

J. Jeong Lab

Let   and   be the maximum amount of A and B in  , respectively. Now 
let’s consider each solution as a point in a coordinate plane, where   coordinate 
is the amount of A and  coordinate is the amount of B in the solution. Assume 
that the collection   contains  ,  , and . Then it is not difficult to 
observe that a solution   is “bad” if and only if the representing point lies in the 
boundary and the interior of the convex hull consisting of points in  .

Suppose that Mr. Jeong only checks whether the solution is bad or not and does 
not add the his collection   (i.e.   is invariant). Then the queries are simply 
asking whether the given point lies in the convex hull. To answer these queries, 
we sort the points in   in a counter-clockwise manner with respect to the origin. 
When the query point  is given, we binary search the sorted points and find 
the appropriate position of  as if we are trying to insert the point. (This can 
be done by functions such as lower_bound() in C++.) Then we check two points 
adjacent to the found position, and it is enough to check if the new point lies 
inside or outside the triangle consisting of that two points and the origin.

Now let’s consider our original problem. Here, the set   varies, so we need to 
update the convex hull efficiently. This is called dynamic convex hull problem, and 
it is difficult in general. But here, only the points in the first quadrant is added, 
and there is no delete operation, so the life becomes easier. Suppose we are trying 
to insert the point . Similar to the previous paragraph, we first find the 
appropriate position to insert. Now we should “really” insert the point, but also we 
should delete some points that does not belong to the hull anymore. Observe that 
if we should delete the point   in the hull, then all the points lying between 
  and  should be deleted too. So we could simply start from the position 
that we are trying to insert to, and iterate the sorted data structure to the front 
and the back until we can delete the point from the structure. We could use a 
data structure like red black tree (set in C++ and TreeSet in Java) to efficiently 
insert and delete from the sorted data. Note that we should also update   and 
 .

Now let’s check the time complexity. Using techniques like Graham scan, the 
convex hull can be built in  log time. Throughout the queries, we delete no 
more than   points, so it takes  log  time with red black tree 
for all   queries. Therefore, the total time complexity is  log  and 
it is enough for the limit  ≦  and  ≦ .

http://imo-official.org/problems/IMO2013SL.pdf


K. Kimino Ichi Wa〭

First, realize that a graph satisfying the requirements is very specific. It is just a 
path, with at most one simple cycle attached to each intermediate vertex. For 
example:

Therefore, the length of a walk from a vertex A from another vertex B is (The 
length of the shortest path from A to B) + (A linear combination of the lengths of 
the cycles that shares a point with that path). Denote ,   as the starting point 
of Taki and Mitsuha,    as the shortest path length from V to T, and  , , …, 
  as the lengths of the cycle in the path. Define   and  , …,  similarly but 
from V to M. The problem of deciding if Taki and Mitsuha can meet at V is then 
equivalent to answering “Is there a non-negative integer solution  such 

that   
  



   
  



?”

WLOG assume  ≤  . That is, M is farther than T from V. If Taki and 
Mistuha are to meet at V, Taki should spend time in a cycle, so   . Combined 
with   ≤  , we get   . From this, we prove that there is a non-negative 
solution iff     is divisible by   gcd⋯⋯.


  




  



 is a multiple of  , so     must also be a multiple of   if 

there is a solution. If     is a multiple of  , we can find an integer solution 
using extended euclidean algorithm. If one of the unknowns (say ) is negative, we 
can make it larger by picking any , then adding  from  and  from . The 
equality still holds since         . By repeating this process, 
we obtain a non-negative integer solution. QED.

Now, for each vertex V, we check if Mitsuha and Taki can meet at V by 
computing the gcd of cycle lengths on the path from V to T, and from V to M. 
Among those vertices, pick the vertex closest to the starting station. It is unique 



since it must be an intersection of the path and a cycle.

L. Labor

Count the number of trapezoids with lower acute angles. The other type (upper 
acute angles) can be counted by switching the ropes and doing the same thing.

Let  be the number of lower points placed at the left side of the -th upper 
point. Define  similarly, but at the right side. Then we have to compute 


  

. This equals 



  

. Now, let   
  



. The formula then 

becomes 


 . If we already have the values of   and  , the 

counting can be done in linear time.
How do we compute ? Sort all the points; in case of a tie, The upper point 

comes first. Then sweep the points, keeping track of the number of lower points 
encountered. When you encounter an upper point, update . You can also 
compute  here: just subtract  from  , and subtract  more if the next 
point has the same x coordinate. Computing   is much easier. Just set    
and     .

It can be seen that the y-coordinates of the ropes are red herring that have no 
effect on the answer.


